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ABSTRACT
Conversion prediction plays an important role in online advertis-
ing since Cost-Per-Action (CPA) has become one of the primary
campaign performance objectives in the industry. Unlike click pre-
diction, conversions have different types in nature, and each type
may be associated with different decisive factors. In this paper, we
formulate conversion prediction as a multi-task learning problem,
so that the prediction models for different types of conversions
can be learned together. These models share feature representa-
tions, but have their specific parameters, providing the benefit of
information-sharing across all tasks. We then propose Multi-Task
Field-weighted Factorization Machine (MT-FwFM) to solve these
tasks jointly. Our experiment results show that, compared with two
state-of-the-art models, MT-FwFM improve the AUC by 0.74% and
0.84% on two conversion types, and the weighted AUC across all
conversion types is also improved by 0.50%.

CCS CONCEPTS
• Computing methodologies → Factorization methods; • In-
formation systems → Computational advertising; • Theory
of computation → Computational advertising theory.
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1 INTRODUCTION
Online advertising is a 27.5-billion dollar business in fiscal year
2017 [4], and advertisers have been shifting their budgets to pro-
grammatic ad buying platforms. Recently, more and more adver-
tisers are running campaigns with Cost-Per-Action (CPA) goals,
seeking to maximize conversions for a given budget. To achieve
such objectives, accurate prediction of conversion probability is
fundamental and has attracted lots of research attention in the past
few years [1, 2, 8, 20, 21].

Advertising platforms insert pixels (i.e. Javascript codes) into
advertisers’ websites to track users’ conversions, and there are sev-
eral types of conversions that the advertisers want to track. Some
pixels track whether a user fills out an online form, while other
pixels track whether a user buys a product. The existence of differ-
ent types of conversions makes conversion prediction challenging
because the decisive factors that drive users to convert may vary
from one conversion type to another. For example, whether to fill
out a form online is a personal decision, so field User_ID and its
interaction effects with other fields, should be the decisive factor.
While for online purchase, the product itself or its corresponding
brand play more important roles.

To address this problem, one approach is to build a separate
model for each conversion type. However, this is memory intensive
and it fails to leverage information from other conversion types.
Another approach is to build a unified model which captures the
2-way or 3-way interactions between fields, with conversion type
included as one of the fields. However, the 2-way model fails to
capture the different field interaction effects for different conversion
types, while the 3-way model is computationally expensive.

In this paper we study an alternative approach, i.e., formulating
conversion prediction as a multi-task learning problem, so that
we can jointly learn prediction models for multiple conversion
types. Besides task-specific parameters, these models share low
level feature representations, providing the benefit of information
sharing among different conversion types. We propose Multi-Task
Field-weighted Factorization Machine (MT-FwFM), based on one of
the best-performing models for click prediction, i.e., Field-weighted
Factorization Machine (FwFM) [24], to solve these tasks together.

Our main contribution is two-fold: First, we formulate conver-
sion prediction as a multi-task learning problem and propose MT-
FwFM to solve all tasks jointly. Second, we have carried out ex-
tensive experiments on real-world conversion prediction data set
to evaluate the performance of MT-FwFM against existing models.
The results show that MT-FwFM increases the AUC of ROC on two
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conversion types by 0.74% and 0.84%, respectively. The weighted
AUC of ROC across all tasks is also increased by 0.50%.We have also
conducted comprehensive analysis, which shows that MT-FwFM
indeed captures different decisive factors for different conversion
types.

The rest of the paper is organized as follows. We investigate the
field interaction effects for different conversion types in Section 2.
Section 3 describes MT-FwFM in detail. Our experiment results are
presented in Section 4. In Section 5, we conduct analysis to show
that MT-FwFM learns different field interaction effects for different
conversion types. Section 6 and Section 7 discuss the related work
and conclude the paper.

2 FIELD INTERACTION EFFECTS FOR
DIFFERENT CONVERSION TYPES

The data used for conversion prediction are typicallymulti-field cat-
egorical data [32], where features are very sparse and each feature
belongs to only one field. For example, feature yahoo.com and Nike
belong to field Page_TLD (Top-level domain) and Advertiser, respec-
tively. In click prediction, it has been verified that different field
pairs have different interaction effects on multi-field categorical
data [19, 24].

In conversion prediction, advertisers would like to track different
types of conversions, and they spend most of their budget on the
following four types:

• Lead: the user fills out an online form
• View Content: the user views a web page such as the landing
page or a product page

• Purchase: the user purchases a product
• Sign Up: the user signs up an account

The decisive factors, i.e., the main effect terms (fields) and/or the
interaction terms (field pairs) that drive a user to convert, may vary a
lot among these types. Following the analysis in [24], we verify this
by computing mutual information (MI) between each field pair and
each type of conversion on our real-world data set described later
in section 4.1. Suppose there areM unique features {x1, . . . ,xM },
N different fields {F1, . . . , FN } and T conversion types. We denote
F (i) as the field that feature i belongs to, and t ∈ T as the conversion
type. The interaction effect of a field pair (Fp , Fq ) with respect to
conversions of type t is measured by:

MI t ((Fp , Fq ),Y ) =
∑

(i, j)∈(Fp,Fq )

∑
l ∈{0,1}

pt ((i, j), l) log
pt ((i, j), l)

pt (i, j)pt (l)

(1)
where pt ((i, j), l) is the marginal probability of pt (xi = 1,x j =
1,y = l), pt (i, j) denotespt (xi = 1,x j = 1), andpt (l) is the marginal
probability of pt (y = l). All marginal probabilities are computed
based on the samples from each conversion type t .

The top 5 field pairs that have the highest mutual information
w.r.t. each conversion type are shown in Table 1. It shows that
these field pairs vary among types: all 5 field pairs of Lead contain
field User_ID and all 5 field pars of View Content contain publisher

fields (Page_TLD and Subdomain)1. For Purchase and Sign Up, most
field pairs contain one publisher field and one advertiser field (Ad,
Creative, Line). The heat maps of the mutual information for all field
pairs with respect to each conversion type are shown in Figure 2
and please refer to section 4.1 for the explanation of each field.

There are several approaches to capture different field interaction
effects for different conversion types. The first one is to build one
model for each conversion type, and train each model separately.
However, this is not preferred in the real-world advertising plat-
form because lots of memories are required to store the parameters
of all models. In addition, extreme low conversion rate for some
conversion types may render the lack of sufficient positive samples
to train the corresponding models.

The second approach is to build a unified model, with conversion
type as one of the fields. However, all 2-way state-of-the-art models,
such as 2-way Factorization Machines (FM) and Field-weighted
Factorization Machines (FwFM), are not able to fully capture the
differences in field interaction effects among different conversion
types. 3-way FM and FwFM may resolve this issue, but the online
computing latency is much higher. Please refer to Section 3.3.3 for
the details.

3 MULTI-TASK FIELD-WEIGHTED
FACTORIZATION MACHINE

We formulate the prediction of different types of conversions as a
multi-task learning problem, and proposeMulti-Task Field-weighted
Factorization Machine (MT-FwFM) to train these models jointly.
This section is organized as follows: Section 3.1 introduces FwFM
and MT-FwFM in detail; the training procedure of MT-FwFM is
described in section 3.2. In Section 3.3, we analyze the number of
parameters as well as computing latency for MT-FwFM.

3.1 Multi-Task Field-weighted Factorization
Machine (MT-FwFM)

MT-FwFM is a variant of Field-weighted Factorization Machine
(FwFM), which is introduced in [24] for click prediction. FwFM is
formulated as

p(y |Θ,x) = σ (ΦFwFM (Θ,x)) (2)

where σ (x) is the sigmoid function, and ΦFwFM (Θ,x) is the sum
of the main and interaction effects across all features:

ΦFwFM (Θ,x) = w0 +
M∑
i=1

xi ⟨vi ,wF (i)⟩

+

M∑
i=1

M∑
j=i+1

xix j ⟨vi ,vj ⟩rF (i),F (j)

(3)

Here Θ is a set of parameters {w0,w,v, r }: w0 denotes the bias
term;vi refers to the embedding vector for feature i;wF (i) denotes
main term weight vector for field F (i), which is used to model the

1Page_TLD denotes a top-level domain of a web page, while Subdomain denotes the sub-
domain. For example, given a web page with URL https://sports.yahoo.com/warriors-loss-
76ers-vivid-illustration-075301147.html, the Page_TLD is yahoo.com and the Subdomain
is sports.yahoo.com



Conversion Type Top 5 Field Pairs
Lead (Ad, User), (Creative, User), (Line, User), (Subdomain, User), (Advertiser, User)

View Content (Subdomain, Hour), (Ad, Subdomain), (Creative, Subdomain), (Subdomain, Age_Bucket), (Page_TLD, Hour)
Purchase (Ad, Subdomain), (Creative, Subdomain), (Ad, Page_TLD), (Creative, Page_TLD), (Line, Subdomain)
Sign Up (Ad, Subdomain), (Creative, Subdomain), (Ad, Age_Bucket), (AD, Page_TLD), (Creative, Page_TLD)

Table 1: Top 5 field pairs in terms ofmutual information for each conversion type. Please refer to Section 4.1 for the description
of these fields in detail.

main effect of feature i; rF (i),F (j) denotes the field interaction weight
between field F (i) and F (j).

We modify FwFM in the following ways to get MT-FwFM: First,
instead of using one bias termw0, MT-FwFM has one bias termwt

0
for each conversion type t . Second, each conversion type has its own
wt
F (i) to model the main effect of feature i . Last, each conversion

type also has its own field interaction weights r tF (i),F (j). The feature
embeddings vi are kept the same as FwFM and are shared by all
conversion types. Mathematically,

ΦMT−FwFM (Θ,x) = wt
0 +

M∑
i=1

xi ⟨vi ,w
t
F (i)⟩

+

M∑
i=1

M∑
j=i+1

xix j ⟨vi ,vj ⟩r
t
F (i),F (j)

(4)

MT-FwFM can be regarded as a 3-layer neural network: each
sample is first processed by an embedding layer that maps each
binary feature xi to an embedding vector vi , then by a main &
interaction layer which consists ofvi and ⟨vi ,vj ⟩.

Each node in the main and interaction layer is connected to a
output layer which consists ofT nodes, one for each conversion type.
The connections betweenvi and each output node are weighted by
wt
F (i), while connections between ⟨vi ,vj ⟩ and each output node

are weighted by field interaction weights r tF (i),F (j). The architecture
of MT-FwFM is shown in Figure 1.

3.2 Joint Training
The feature embedding vectors vi are shared during the model
training by all conversion types and are optimized for every sam-
ple. However, for the conversion type specific parameters such
aswt

0 ,w
t
F (i) and r

t
F (i),F (j), they are only optimized for samples of

corresponding type. We minimize the following loss function for
MT-FwFM:∑

i
−yi log ŷi − (1 − yi ) log(1 − ŷi ) + λΩ(Θ) (5)

where ŷi = p(y |Θ,x (i)), yi denotes the label, and Ω(Θ) denotes the
regularization terms w.r.t. the parameters.

We use mini-batch stochastic gradient descent to optimize the
loss function. In each iteration, we select a batch of samples(B)
randomly, where each sample belongs to a specific task, i.e., con-
version type in our case. Within each batch, the model is updated
according the conversion type of each sample. More specifically,vi
is updated for all samples, whilewt

0 ,w
t
F (i) and r

t
F (i),F (j) are updated

Figure 1: Architecture of MT-FwFM. In the one-hot encod-
ing layer, each field has only one active feature, represented
as the red squares. Each active feature is then mapped to an
vector in the embedding layer. The blue rectangles in main
& interaction layer are copies of the vectors from the embed-
ding layer, while the blue circles represent the dot products
between embedding vectors, i.e., ⟨vi ,vj ⟩. There are T nodes
in the output layer, one for each conversion type. The or-
ange dash lines that connect vi with each output node are
weighted by the main term weight vectors wt

F (i), while the
connections between blue circles and each output node are
weighted by the field interaction weights r tF (i),F (j). We omit-
tedwt

0 in this figure for the sake of simplicity.

only for samples with conversion type t . The training procedure is
summarized in Algorithm 1.

Data: S = {(x ,y, t)}
Initialize parameter Θ : {w,v,w, r } randomly ;
for epoch = 1 to∞ do

Sample a set of training samples B from S randomly
Compute log loss:
L(Θ) =

∑
(x ,y,t )∈B −y log ŷ − (1 − y) log(1 − ŷ) + λΩ(Θ)

Compute gradient: ∇(Θ)
Update model: Θ = Θ − η∇(Θ)

end
Algorithm 1: Training procedure of MT-FwFM.



3.3 Model Complexity
There are two key constraints when we build a conversion predic-
tion model in the real-time serving system: the memory needed to
store all parameters, and the computing latency for each sample.
We’ll analyze these two constraints in this section.

3.3.1 Number of Parameters. The number of parameters in MT-
FwFM is

T +MK + NTK +
N (N − 1)

2
T ≈ MK (6)

whereT ,M , N , K refer to the number of conversion types, features,
fields, as well as the dimension of the feature embedding vectors
and main term weight vector, respectively.

Thus in (6), T represents the number of bias termswt
0 ;MK cal-

culates the number of parameters for the embedding vectors vi ;
NTK corresponds towt

F (i), i.e., the main term weight vectors for all

conversion types; N (N−1)
2 T denotes the number of field interaction

weights r tF (i),F (j). The number of parameters approximately equals
toMK , given that T ≪ M and N ≪ M .

3.3.2 Online Computing Latency. The online computing latency
for each prediction request grows linearly with the number of
operations, such as float additions and multiplications. During the
inference of MT-FwFM, for each sample, the number of operations
in the main effect terms is

N · (2K − 1) + (N − 1)

and the number of operations in the interaction terms is(
N

2

)
· 2K +

(
N

2

)
− 1

Thus the total number of operations of MT-FwFM is

N 2K + NK +

(
N

2

)
≈ N 2K

3.3.3 MT-FwFM v.s. Using Conversion Type as a Field. Besides for-
mulating conversion prediction as a multi-task learning problem, an
alternative approach is to incorporate conversion type as one of the
fields in the existing models, such as FM and FwFM. We can either
consider the 2-way interactions between fields, referred as 2-way
Conversion Type as a Field (2-way CTF), or the 3-way interactions,
referred as 3-way Conversion Type as a Field (3-way CTF). 2-way
CTF with FM and FwFM are used as baseline models in Section 4.

For 3-way CTF with FM or FwFM, the number of operations is
much more than that of MT-FwFM, which makes them less pre-
ferred in the production environment. We discuss the number of
operations of 3-way CTF with FwFM as an example here and omit
that for FM since they are very similar. The formula of 3-way CTF
with FwFM are:

Φ(Θ,x) = w0 +
M+T∑
i=1

xi ⟨vi ,wF (i)⟩

+

M+T∑
i=1

M+T∑
j=i+1

⟨vi ,vj ⟩

+

M∑
i=1

M∑
j=i+1

T∑
t=1

xix jxt ⟨vi ,vj ,vt ⟩rF (i),F (j)

(7)

where ⟨vi ,vj ,vt ⟩ =
∑K
k=1v

(k )
i · v

(k )
j · v

(k )
t is a 3-way dot product.

The number of operations of 3-way CTF with FwFM is( 5
2
N 2 +

3
2
N + 2

)
K +

(
N

2

)
(8)

It is approximately 5
2N

2K , which is 150% more than that of MT-
FwFM. Thus, compared with MT-FwFM, 3-way CTF with FwFM is
less preferred due to its much more number of operations.

4 EXPERIMENTS
This section presents our experimental evaluation results. We intro-
duce the data set in Section 4.1, and describe the implementation
details in Section 4.2. Section 4.3 compares the performance of
MT-FwFM with that of 2-way CTF with FM and FwFM. We denote
2-way CTF with FM or FwFM as FM or FwFM in this section for
the sake of simplicity.

4.1 Data Set
The data set is collected from the impression and conversion logs
of the Verizon Media DSP advertising platform. We treat each im-
pression as a sample, and use the conversions to label them. The
labeling is done by last-touch attribution, i.e., for each conversion,
only the last impression(from the same user and line 2) before this
conversion is labeled as a positive sample. All the remaining im-
pressions are labeled as negative samples. The type of each sample
is the type of the corresponding line. A line may be associated
with multiple conversions that belong to several different types.
However, in this paper we focus on those lines that have only one
type of conversions since they contribute to most of the traffic as
well as spend in our platform.

We use 7 days of impression logs, denoted as T1 to T7, as the
training data set. Then conversions from T1 to T13 are used to la-
bel those impressions. A 6-days longer conversion time window
is used because there are usually delays between impressions and
conversions, and most conversions happens within 6 days after
impressions. We then downsample the negative samples to solve
the data imbalance issue since the ratio of positive samples is in the
order of 10−4 in the data set. We get approximately equal number
of positive and negative samples in the training set after downsam-
pling.

The validation data set is collected from the impression logs on
T8, and the test data set is collected on T9. Conversions from T8
to T14 and T9 to T15 are used to label the validation and test set,

2Line is the smallest unit for advertisers to set up budget, goal type, targeting criteria
of a group of ads



Data set Samples CVR Features

Train

Purchase 4,552,380 0.1858 11,852
Lead 6,566,688 0.3402 15,728

Sign Up 3,332,250 0.8797 13,227
View Content 170,694 0.3690 1,171

Validation

Purchase 12,800,160 4.63E-04 11,153
Lead 17,036,604 5.59E-04 9,474

Sign Up 2,222,334 3.30E-03 5,591
View Content 441,252 4.90E-04 1,494

Test

Purchase 12,623,382 4.52E-04 11,007
Lead 18,738,990 5.37E-04 9,373

Sign Up 1,926,558 3.41E-03 5,553
View Content 383,940 4.69E-04 1,173

Table 2: Statistics of training, validation and test data sets.

respectively. We do not downsample on validation and test data
sets, since the evaluation should be applied to data sets that reflect
the real class distribution. Table 2 summarizes the statistics of the
training, validation and test data set.

There are 17 fields of features, which fall into 4 categories:

(1) User-side fields: User_ID, Gender and Age_Bucket
(2) Publisher-side fields: Page_TLD, Publisher_ID, and Subdo-

main
(3) Advertiser-side fields: Advertiser_ID, Creative_ID, AD_ID,

Creative_Media_ID, Layout_ID, and Line_ID
(4) Context fields: Hour_of_Day, Day_of_Week, Device_Type_ID,

Ad_Position_ID, and Ad_Placement_ID

We use Conversion_Type_ID as an additional field for FM and FwFM.
The meanings of most fields are quite straightforward so we only
explain some of them:

• Page_TLD: top-level domain of a web page.
• Subdomain: subdomain of a web page.
• Creative_ID: identifier of a creative, which is an image or a
video.

• Ad_ID: identifier of a (Line_ID, Creative_ID) combination.
• Creative_Media_ID: identifier of the media type of the cre-
ative, i.e., image, video or native.

• Layout_ID: the size of a creative, for example, 300 × 200.
• Device_Type_ID: identifier of whether this event happens on
desktop, mobile or tablet.

• AD_Position_ID & AD_Placement_ID: identifiers of the posi-
tion of an ad on the web page.

4.2 Implementations
All baseline models as well as the proposed MT-FwFM model are
implemented in Tensorflow. The input is a sparse binary vector
x ∈ RM with only N non-zero entries. In the embedding layer, the
input vector x is projected into N embedding vectors vi , one for
each field. The main and interaction effect terms in the next layer,
i.e., main & interaction layer, are computed based on theseN vectors.
The main effect terms simply concatenate all N vectors, while the
interaction effect terms calculate the dot product ⟨vi ,vj ⟩ between
each feature pair. Then, each node in the main & interaction layer

is connected to the output layer, which consists ofT nodes, each of
them corresponds to one specific conversion type.

4.3 Performance Comparisons
This section compares MT-FwFM with FM and FwFM on the data
sets introduced above. For the hyper-parameters such as regular-
ization coefficient λ and learning rate η in all models, we select the
values that lead to the best performance on the validation set and
then use them in the evaluation on the test set. We focus on the
following performance metrics:

Overall AUC. AUC of ROC (AUC) specifies the probability that,
given one positive and one negative sample, their pairwise rank
is correct. Overall AUC calculates the AUC over samples from all
conversion types.

AUC for each conversion type. The AUC on the samples from
each conversion type, denoted as AUCt .

Weighted AUC. The weighted average of the AUC on each
conversion type: ∑

t ∈T AUCt · Nt∑
t ∈T Nt

where Nt refers to the spend of conversion type t . The weights Nt
are the spend of each conversion type.

Table 3 summarizes the experiment results. It shows that MT-
FwFM gets the best performance w.r.t. both overall and weighted
AUC, with a lift of 0.19% and 0.50% over the best performing base-
line, respectively. While the performance improvement on overall
AUC is marginal, the lift on weighted AUC is significant.

Table 4 compares the performance of all models on each conver-
sion type. Among four conversion types, View Content and Purchase
have high AUCs than the other two types using the baseline mod-
els(over 95% v.s. under 82%). For these two conversion types that
already get high AUC, the lifts of MT-FwFM are more or less neutral,
namely 0.03% and −0.24%. On the other hand, for conversion type
Lead and Sign Up that get low performance on baseline models,
MT-FwFM improves the AUC by 0.74% and 0.84%.

Therefore, we conclude that MT-FwFM outperforms FM and
FwFM significantly w.r.t. the weighted AUC over all conversion
types. And this improvement mainly come from the conversion
types that get relatively low AUC using the baseline models.

5 STUDY OF LEARNED FIELD INTERACTION
EFFECTS FOR DIFFERENT CONVERSION
TYPES

In this section, we analyze MT-FwFM in terms of its ability to cap-
ture different field interaction effects for different conversion types.
As described in Section 2, the field interaction effects are measured
by the the mutual information between a field pair (Fp , Fq ) and the
conversion of each type, i.e.,MI t ((Fp , Fq ),Y ). Figure 2 presents the
visualization of these field interaction effects by heat maps.

The difference among the four heat maps in Figure 2 illustrates
how field interaction effects vary among different conversion types.
For Lead, User_ID has very strong interaction effects with almost all
other fields, especially with Page_TLD, Subdomain, Ad and Creative.
For View Content, field pairs containing publisher-side fields such as



Model Overall AUC Weighted AUC
Training Validation Test Training Validation Test

FM 0.9706 0.9014 0.9012 0.9537 0.8500 0.8383
FwFM 0.9702 0.9023 0.9027 0.9530 0.8520 0.8400

MT-FwFM 0.9728 0.8999 0.9046 0.9574 0.8511 0.8450
Table 3: Performance comparison on real-world conversion data set.

Type Model Training AUC Validation AUC Test AUC

Lead
FM 0.8393 0.8412 0.8116

FwFM 0.8357 0.8536 0.8109
MT-FwFM 0.8502 0.8258 0.8190

View Content FM 0.9523 0.9577 0.9542
FwFM 0.9511 0.9569 0.9537

MT-FwFM 0.9563 0.9580 0.9545

Purchase
FM 0.9922 0.9758 0.9684

FwFM 0.9924 0.9804 0.9761
MT-FwFM 0.9930 0.9799 0.9737

Sign Up
FM 0.9381 0.7529 0.7475

FwFM 0.9374 0.7564 0.7501
MT-FwFM 0.9428 0.7545 0.7585

Table 4: Performance comparison on data set of each conversion type.

Page_TLD and Subdomain have large mutual information in general.
For Purchase and Sign Up, we observe field pairs with advertiser-
side fields, such as Advertiser, Ad, Creative and Line, have strong
interaction effects with other fields.

To verify whether MT-FwFM captures the different patterns
of field interaction effects among conversion types, we compare
MI t ((Fp , Fq ),Y ) with the learned field interaction effect between
Fp and Fq on conversion type t , namely |r tFp,Fq

|. Here we only
consider the magnitude of r tFk ,Fl , since either a large positive or
negative value indicate a strong interaction effect. Figure 3 shows
the heat maps of |r tFp,Fq | for all conversion types.

According to the comparison between Figure 2 and Figure 3,
the learned field interaction effects |r tFk ,Fl

| have similar pattern
with their mutual information for each conversion type. In general,
Figure 3 looks like a pixelated version of Figure 2. For Lead, MT-
FwFM successfully captures that User_ID have strong interaction
effects with other fields. For View Content, field pairs including
the publisher-side fields, e.g., Publisher, Page_TLD, and Subdomain
generally have large magnitude of |r tFk ,Fl |. For Purchase and Sign
Up, advertiser-side fields, e.g., Advertiser, Ad, Creative and Line have
in general large |r tFk ,Fl | with other fields.

6 RELATEDWORK
There has been lots of work in the literature on click and conver-
sion prediction in online advertising. Research on click prediction
focus on developing various models, including Logistic Regression
(LR) [8, 23, 27], Polynomial-2 (Poly2) [6], tree-based models [16],
tensor-based models [26], Bayesian models [13], Field-aware Factor-
ization Machines (FFM) [18, 19], and Field-weighted Factorization

Machines (FwFM) [24]. Recently, deep learning for CTR prediction
also attracted a lot of research attention [9, 14, 15, 25, 29, 30, 32].

For conversion prediction, [20] present an approach to estimate
conversion rate based on past performance observations along data
hierarchies. [8] and [1] propose a logistic regression model and log-
linear model for conversion prediction, respectively. [28] provides
comprehensive analysis and proposes a new model for post-click
conversion prediction. [3] proposes a ranking model that optimize
the conversion funnel even for CPC (Cost-per-Click) campaigns.
[17] proposes a time-aware conversion prediction model. [21] de-
scribes a practical framework for conversion prediction to tackle
several challenges, including extremely sparse conversions, delayed
feedback and attribution gaps. Recently, there are also several work
on modeling the delay of conversions [7, 31].

Multi-Task Learning (MTL) [5] has been used successfully across
multiple applications, fromnatural language processing [10], speech
recognition [11], to computer vision [12]. MTL is also applied to on-
line advertising in [2] to model clicks, conversions and unattributed
conversions. In [22] the authors proposes a multi-task model to
solve the tasks of click prediction and click-through conversion
prediction jointly.

7 CONCLUSION
In this paper, we formulate conversion prediction as a Multi-Task
learning problem and propose Multi-Task Field-weighted Factoriza-
tion Machines (MT-FwFM) to learn prediction models for multiple
conversion types jointly. The feature representations are shared by
all tasks while each model has its specific parameters, providing the
benefit of sharing information among different conversion predic-
tion tasks. Our extensive experiment results show that MT-FwFM
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Figure 2: Heat maps of mutual information between field pairs and each type of conversion.

outperforms several state-of-the-art models, including Factoriza-
tion Machines (FM) and Field-weighted Factorization Machines
(FwFM). We also show that MT-FwFM indeed learns different field
interaction effects for different conversion types. There are many
potential directions for future research. To name a few, we could in-
volve more tasks to the current model, including predicting clicks or
non-attributed conversions, or build a deep neural network (DNN)
on top of MT-FwFM to better solve these tasks.
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